
UDC 541.124 :532.5 + 532.529 

METHODS OF CONTINUOUS MEDIUM MECHANICS FOR DEFINING POLYPHASE 

h4ULTICOMPONENT MDCTURES WITH CHEMICAL REACTIONS 

AND HEAT- AND MASS-TRANSFER 

PMM Vol. 39, No 3, 1975, pp.485-496 
I. N. DOROKHOV, V, V. KAFAROV and R. I. NIGMATULIN 

(Moscow) 
(Received January 7, 1974) 

Equations of mechanics of multicomponent two-phase compressible disperse mix- 
ture, in which heat and mass transfer processes and chemical reactions take place, 
are derived. Interphase energy transfer in particular during component transition 

from one phase to another is analyzed. Problems of allowance for phase imper- 
fections and of conditions of thermodynamic equilibrium are considered. Expli - 
tit expression is derived for the dissipation function, linear phenomenological 
relationships are analyzed, and singularities of the structure of direct and cross 

effects which develop in the system are disclosed. 
The state of investigations related to mechanics of heterogeneous mixtures is 

presented in the survey Cl]. We would point out here that Rakhmatulin was the 
first to formulate a closed system of equations for determining mixtures of com- 
pressible phases [a]. The system included equations of mass and momenta of 
phases and equations for the over-all pressure. The proposed in it scheme for 
defining the force of interaction between phases is peculiar to a polyphase mix- 

ture and not to the multicomponent one. These concepts were applied to a satu- 

rated porous medium consisting of a mixture of two compressible phases without 
phase transitions. A scheme for defining energy exchange between phases and 
thermodynamic equations were proposed. 

A system of hydromechanical equations for a two-phase single-component 

disperse mixture of compressible phases was considered in [4]. Phase transform- 

ations, which complicate the interphase exchange of energy and momentum, 
were assumed to be present in the mixture. This model was later supplemented 
by an allowance for surface effects and small scale flows around inclusions [S]. 
The equations of balance of mass, momentum and energy of components in a 
multi-speed form were formulated in [6-lo]. No clear distinction between ho- 
mogeneous and heterogeneous mixtures was made in a number of investigations 
of this kind Cl], with the analysis reduced to that of equations of conservation 
of components. 

It should be noted that in the case of a homogeneous mixture it is not neces- 
sary to have separate equations of momentum and energy for each component. 
Such separation (hence, also, the setting of momentum and energy exchange) 
must be made by phases only, i.e. in the case of a heterogeneous mixture in 
which in addition to other conditions it is necessary to take into account parts 
of volume and interphase surface of mixture occupied by each phase Cl] (this 
problem does not arise in the case of homogeneous mixtures). An important as- 
pect of the definition of a heterogeneous mixture is the correct determination 
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of the structure of terms which define the interaction between phases which takes 
place at interphase surfaces. 

1. Basic o88umption.s. Let us consider a two-phase n-component medium in 
which chemical reactions occur inside each phase simultaneously with interphase tran- 

sitions. The basic assumption is that the phases are homogeneous mixtures (solutions, 
mixturesofgases) and that the distances along which flow parameters change consider- 
ably (outside discontinuity surfaces) are substantially greater than the characteristic in- 

homogeneities or inclusions (drops, bubbles, particles) which define the mixture phase 
structure. This makes it possible to define the behavior of such mixture by using the con- 

cept of interpenetrating continua [ 1, 41. 

Let Pike be the density of the k-th component (k = 1, 2, . . .( n) in the i-th 
phase averaged over the volume occupied by the i- th phase (i = 1, 2) . Then 

k=l i=l 

where pi0 and pi are the true and the mean density ofthe i-th phase ai is the volume 
of the i- th phase, and p is mixture density. 

We define the velocity of a phase by its mass velocity 

vi = + i VikPik 
z k=l 

where v ik’is the velocity of the k-th component in the I- th phase, averaged over com- 
ponents contained in that phase. 

We assume that within each phase the hypothesis of local equilibrium is valid, hence 

it is possible to assign to each of these their individual temperature Ti, internal energy 

Ui) entropy Si, enthalpy ii, pressure pi and other thermodynamic functions. 
The multicomponent structure of phases implies that thermodynamic functions ofeach 

phase depend not only on the phase temperature Ti and its density piO, but also on the 

phase COmpOSitiOIl Gil, Ci2, . . ., Gin (Cik = pik / pi). 

Let us consider a mixture of compressible phases in eacn of which strength effects are 
absent. We consider the first phase as the carrier and the second to be in the form of 
discrete inclusions (drops, bubbles, particles) of identical dimensions whose direct mech- 
anical interaction can be neglected. Then a2 == ~ma”, where q is the particle form 

coefficient and m is the number of particles in a unit of mixture volume which in the 
absence of fractionation, coagulation and formation of new particles satisfies the equa- 

dm I diit + C (mv,) = 0 
The carrier phase is simulated by a viscous fluid, whose surface force tensors oi”’ and 
those of viscous stresses riQ1 are defined by 

where 6Q[ is the Kroneker delta, A1 and pl are viscosity coeffcients and elPz is the de- 
formation rate tensor of the carrier phase. Values of h, and j+ are affected by the pre- 
sence of inclusions [4], 

2. Differential equation). We introduce for each phase the operator of the 
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substantive derivative (here and throughout the subsequent analysis summation is carried 
out only with respect to superscripts which relate to projections on coordinate axes) and 
define the diffusion stream of the k- th component in the i- th phase by 

(2.1) 

jik = pik cVik - vi> = PikWikr kzl &kWik = o 

where Wi k is the diffusion rate of the k- th component in the i- th phase. 

The equation of mass conservation for the k-th component is of the form 

dipik/dt + PikVvi = - Vjik + Jk(ii, - Jk(ii) $ s vk(ir) (ir) I 

?=a 

(2.2) 

Here and in what follows subscript i is equal 1 and 2 ; the pair of subscripts (ij) assumes 

the values (12) and (21), respectively ; J~ij) is the “observed” macroscopic rate ofthe 
k-,th component transfer through the phase separation boundary in the direction i --t j 
(owing to phase transformation) ; Ici,.) is the rate of the r-th chemical reaction (r = 
1, 2, . . .) N) in the i-th phase; YH~,.) = &i&k; (3k(ir) is the stoichiometric co- 
efficient for the k-th component participating in the F th chemical reaction in the i-.th 
phase, and bfk is the molecular mass of the k- th component. 

Passing to mass concentrations, we can write Eq, (2.2) as 
N 

diCik 
Pi 7 = - vjik + Jk(jq - Jkcin f 2 Yk~-)l(iq - %k (J(jo - J(ijj) (2. 3) 

W=l 

The first four terms in the right-hand parts of Eq. (2.3) take into account the change of 

concentration of the k-th component caused by its inflow to or outflow from the volume 
of the considered phase. The last terms relate to the change of concentration of the k- th 

component owing to the change of mass of the considered phase resulting from the over- 

all streams of substance through the phase separation boundary. Summating (2.2) over 
all components, we obtain for the first and second phases the following equation of mass 
conservation : 

dipi I dt + PiVvi = Jtji) - Jcij) 

where allowance is made for 

(2.4) 

i 5 vk(ir$(ir) = 0, J(ji, = i Jk(ji), Jcij, = i JHji, 

k=l i-=1 k=l k=l 

The equations of motion for the first and second phase are of the form [4] 
n 

pi dt divi= --aiVP+VqTiq--f(ij,+ J~ji)(v~ii)-vi)--J~ij)(v~ii)-vi)+ 2 f3ikFik (2. 5) 
k=l 

(for the second phase the second term in the right-hand part is absent, flzl) = - fc12)). 
Here Fi, is the external mass force acting on particles of the k- th component in the 
i- th phase ; fcijj is the force per unit of mixture volume produced by the phase velocity 
unbalance ( v1 and v2 are different), and v(ij) is the mean velocity of the mass passing 
through the phase separation boundary in the direction i --f j. Equations (2.5) are based 
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on the assumptions of the single-pressure model (pr = pz == p) and of smallness of 
dynamic and inertial effects Cl] of diffusion rates 

plkwlkwlk -pP2kW2kW2k-0 

In formulating the equations of balance of the phase internal energy it is preferable 
[4, 11-J to use equations of heat influx which in the considered case are of the form 

J(li) 
(v(ji) - Vi)2 (V(Q) - vJ2 

2 - J(ij) 2 + 5 Fikjik - 
k=l 

i Jk(ji)W&i) - i Jk(&kc(ii) i Q(J~) - Vqi -1. PiQi 
k=l h-21 

(for the second phase the third term in the right-hand part is absent ; q(12) = - Y(n); 
if i = 1, then j = 2 and vice versa). In this equation the first five terms at the right 
in the first equation ( i = 1) and the four in the second equation (i = 2) represent the 
work of internal forces per unit of time in a unit of volume of the first and second phase, 

respectively. Coefficients Xi (x, $- x, = 1) show the part of dissipated energy of the 
mixture produced by the phase force interaction which is directly converted into internal 
energy of the i- th phase. Terms of the first summations in both equations define the 
power output of external mass forces for component diffusion within the limits of the first 
and second phases. The remaining terms, viz., heat influx with xik (ii, and Zih(ij) are 

the quantities of heat transfered from the i- th phase to the substance of the k-th com- 

ponent per unit of its mass, when it effects the transitions j -+ i and i --f j , respectiv - 

ely ; q(ii, is the intensity of (contact) heat exchange between phases ; qi is the heat 
flux within the i-th phase, and Piqi is the output of external heat sources acting in the 

volume of the i- th phase. 

3. Energy tronnfer at fnterphols heat and mraa exchange, Assum- 
ing the additivity of entropy and total energy related to the mass of mixture phases and 
local equilibrium within a phase, we introduce for the phase mixture the specific entropy 
s and (neglecting second powers of the diffusion rate within phases) the specific total 
energy E 

QS = QISl (p, Tlr cll, . . ., cln) -t P2Se (p, T,, C21, . . .T %n) 

pi x plul tp, ~1, ~11, . . ., cln) + p2u2 (P, 2’2, ~213 . 1. .$ czn) -T 

1i2p17J12 i- '12P2u22 

The concept of the substantive derivative for a quantity @ which defines the mixture 
as a whole and is additive with respect to the masses of mixture components 

(3.1) 

was introduced in [4]. This derivative determines the variation of (1) in a fixedvolume 
of the medium, which is unaffected by mass inflow through the boundaries of that vo- 
lume. Let us determine with the use of (3.1) the accommodation conditions which must 
be satisfied by lCik (ii) and &k (ij) in the equation of heat influx (2.6). To do this we 



Methods of continuous medium mechanics for defining polyphase 
multicomponent mixtures 

465 

write the derivative of (3.1) for the total energy of the two-phase mixture E =I @ and 
cl+ = ui + Yz Vi”. 

Substituting into this the equations of heat influx (2.6) and the equations of balance 
for the kinetic energy, which follow from (2.5), we obtain 

DE 
(3.2) 

k=l k=1 
?a 

By the definition of the derivative DE / Dt the variation of total energy of a fixed 

mass of mixture, which is defined by that derivative, is determined only by the external 
effects (defined by the last nine terms) and not by any internal processes. Hence expres- 
sions of the kind of energy sources owing to the transfer of matter from phase to phase 
in the right-hand part of (3.2) (the first and second sums there) must vanish, Introducing 
the enthalpies of phases ii = Ui -j- p / pie, we obtain 

i JWi) f51&ji) + 
k=l 

“Wi)) = L$l .f,(ji, (ii -- fj) = f(ji, (ii - ii) 

The specific definition of the model requires data on that part of energy J(ij) (ij - ii) 
which is expended or absorbed individually by the first and second phase at transitionof 
mass in directions 2 + 1 and 1 --f 2, ire, accommodation relationships for ~ih(ij) 
and & k( ji) must be specified, Let us specify these additional rela~o~ships. If we as- 

sume that am, .--, Xin(ij) are independent of J1(ij), . . ., J,,cijj, it becomes pos- 

sible to replace ~ik(ij) by ik(ij) which determine xik(ij) and distribute the energy 

12 - i, between phases so that 

&k(lZ) = ik(12) - &, 

. . 
22k(l2) = 12 - "k(l2) (3.3) 

X1&(21) = ii - ffr(%l), ~OkfZl) = ik(21) - iz 

where ik(fj) define the accommodation properties of phases at transition i + j. In the 
case of bulk chemical reactions it is possible to take for ik(12) and ik(ei) , as in [4], 
the specific enthalpies of equilibrium transition of the k- th component from one phase 
to another 

ik(ft) = hk, s = hk, s (&I, s. . . ., C,, 9, T,), ik(zl) = ilk, s = (3.4) 

ilk, s h, 1, . * +t Cm, s, T,) 

where T, is the temperature of equilibrium transition of the k- th component in the 
direction 1 2 2; c F 1 .,s and ~.~k,~ are equilibrium concentrations of the k-th compon- 
ent in phases 1 and 2. respectively. In some cases, such as for instance combustion [12]. 
when the chemical reaction takes place at the interphase boundary, these accommoda- 
tion relations~~ are of a more complex form. 

Formulas (3.3) and (3.4) in fact imply that the i-th phase during transition i --f j 
directly looses or absorbs the energy necessary for bringing at the ambient pressure the 

mass undergoing such transition, from a given state to the state of the j-th phase in 
equilibrium. The remaining energy required for bringing that mass from the equilibrium 
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to the working state of the j-th phase is lost or absorbed by the i-th phase itself. 
Accommodation formulas (3.3) and (3.4) require the determination of partial specific 

enthalpies of phase components in equilibrium. In mixtures of gases (vapors) at notvery 

high pressure , and also in liquid solutions,whose heat of component mixing is low, the 
partial properties of a mixture are close to the related properties of pure components. 
However, in imperfect mixtures (considerably deviating from Dalton’s law for gases (va- 

pors) or from the Raoult law for solutions of liquids) partial properties depend on the mix- 
ture composition. They are of the form [13] 

iilr= ipk + Aiik, 
a ln 7ik 

A,& = RT, r (3.5) 
1 

where Aiik is the “excess” enthalpy or correction for phase imperfection, which is a 
function of phase temperature and composition (the heat of mixing of the k-th compo- 
nent in the i-th phase) ; R is the gas constant ; yiii is the measure of imperfectionof 

the i- th phase or the activity coefficient of the k- th component in the i- th phase whose 

implicit relation to the equilibrium composition of the Lth phase (expressed in terms 
of molecular fractions Cik, k = 1, 2, . . . , n) for fixed pessure and temperature fol- 
lows from the Gibbs-Duhem equation [13] 

(3.6) 

Owing to the lack of an explicit analytic expression for the dependence of the activity 
coefficient on mixture composition, approximate formulas are normally used for defin- 
ing the relation between these quantities. One of the most convenient forms of the ex- 

pression for that relation is the one derived by Wilson [ 141 (for the liquid phase) 

ln rlrc = 1 - In 
( 
‘i ClgAkg’ 

) 
- 

,q=l 
i (Cl,AkL / i Cl&?,) (3.7) 
I=1 g=1 

V 
A,, = + exp (‘kk - ‘k,) 

lk 
RTI 1 

where (&k - hkg) is a constant parameter which defines the difference of cohesion 
energies of k - k and k - g molecular pairs and Vik is the specific mole volume of 
the pure k-th component in the liquid phase. For a binary mixturw from (3.7) we ob- 

tain 

ln Tll= - In Cl + CA4 + Cl2 

A12 AZ1 
cll_+ Cl.&? - Az,Cl,+ Cl2 (3.3) 

In ~~2 = - In (Cl2 + Cl&l) - CU 
Al% A21 

Cl1 + C1zh - Cllhzl+ Cl2 

It follows from (3.7) and (3.8) that sufficient experimental data on the equilibrium of 
binary component mixtures constituting a given multi-component mixture are available 
for the determination of Aks and, consequently, of activity coefficients in the liquid 
phase. The activity coefficient of the k-th component of gas mixture in equilibrium 
with the liquid phase is determined by formula [13] 

r?k = (FQ / (Tlk’l#;) (3.9) 

where pko is the vapor pressure of a pure component whose dependence on temperature 
is usually approximated by a power polynomial or the Antoin equation [ 151 
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In PkO (Tz) = a1 + yg$yy -I- arTa + asTz2 -+ as In TZ (3.10) 

where al, , . . , US are constant coefficients and Cpzk is the fugacity coefficient defined 

by the equality [lS] 
dP (3.11) 

The derivative of volume V, of gas mixtnre with respect to the number of moles nzh‘ of 
the k-th component is taken at constant pressure and temperature, and the quantities 

V,, 2’2, P and nzk are interrelated by virial equations of state of real gases 

-= 
(3,121 

where $2, @s, . . . are the second, third, etc. virial coefficients which for an imperfect 

mixture depend on the composition and temperature of the latter [16]. 
It is clear from (3.5) - (3.12) that the knowledge of the equilibrium composition and 

temperature of phases is required for the determination of partial specific enthalpies at 
equilibrium, Computation of the vapor-liquid equilibrium of multicomponent systems 

is based on the equality of com~nent fugacity in phases fl,, = fib. [16] or on 

fli; = r&,kf;k = (PskcskP = .fsk (3.13) 

where flko is the fugacity of the k-th component in the liquid phase in a normal state 
which is determined by the principle of corresponding states [173. Physicochemical 

properties of pure components and experimental data on the equilibrium of binary com- 

ponent mixtures are used as the input inf~mation for computing multicom~nent equi- 

librium by formulas (3. ‘7) - (3.13). This is usually carried out on a computer with the 
use of the iteration method [ 15, 171. Firsr, the activity coefficients of a multicomponent 
mixture are determined for the specified temperature by Eq. (3.7) and then, the equilib- 

rium composition of the system is computed by fromula (3,13) with allowance for(3.9)- 
(3.12). If this results in the sum of computed component concentration in the vapor 
phase being different from unity by more than the specified e, the equilibrium temper- 

ature is corrected and the computation repeated. 

4. Thermodynamic rnaly~i:, Entropy gsnsrrtfon. The assumption 
of local equilibrium within a phase (Sect. 1) makes it possible to obtain for an element 
of the i- th phase moving along the mass center path the Gibbs formula 

where pr k is the chemical potential of the k-th component in the i- th phase. 
Setting in (3.1) @ = s and taking into account theGibbs formula (4, l), we obtain 

the expression for the substantive derivative L)s / Dt for the entropy of a two-phase 
multicom~nent medium in which chemical reactions and interphase transport processes 
take place. We have 

Ds PI dlul 
p-i8===T, dt + 

pz dzuz alp dlpl” 
-- ---SD-- Tz dt PI XI dt (4.2) 
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Substituting (2.6) into (4.2) and taking into consideration formulas (3.3) and (3.4) and 
the thermodynamic equalities [ 1 S] 

n 

where the subscript i = 4, 2 at parentheses implies that the differential is taken at the 
corresponding constant temperatures T, or Ts, we obtain for Ds 1 Dt an expression of 
the form 

f)s PIQI 
Px=K+ (4.4) 

(v(21) - vrf2 (%a) - v2)2 
-- 

1 2T2 I 
7% 

(Bir= ~ 
n 

hkvk(ir), qi” = qi - 2 iikjik, iL_1)2 
k=l k=l 

In conformity with the second law of thermodynamics the derivative i?.s / Dt can be 
presented in the form of the sum of two terms 

Ds / Dt = D% / Dt + D% i DE 

where the first term defines the entropy increment of the mixture caused by entropy in- 

flux from outside which is produced by energy exchange with the external medium (the 
first four terms in the right-hand part of (4.4), while DC% / nt (always nonnegative) 
determines the entropy increase produced by internal irreversible processes 

/l(i) S /IS JGeJ.9 
P - = p ..= .--- I, 

Dt 
- = 5, 

/,t 
a>,0 

within and between phases, The dissipation function 0 is represented by the last eleven 
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terms in formula (4.4) and is the sum of the product of thermodynamic forces 

elq’ 
2 = Yjy, x, = (VI - vq) (g+g), x2=-g, x3=_% 
x4 = _ (m1h - FII x _ hvl,Jl - F,,, 

Tl 7 * . *, n+3 - - 
TI 

X n+4 = - 
(vw1h - Fzl 

TZ t * * *, X 2nt3 = - 
Wn)2 - F2n 

I 2 

Y1=&$, Yz=-+- )..., Ystl=-+_ 
1 

B21 
y,v+2=-- ,..., Y2Nt1=--q Y 

~21*,(&~~) + (V(q@ :;il;;v~)2 ) . .T: Y2L::n+l = 

2Nt2+_ltZ?)+ 

by thermodynamic fluxes 

JZ = q@, Jxl = h2), Jx2 = ql*, Jx3 = a*, Jx4 = jll, . . ., Jx, n+3 = jln 
Jx, nt4 = j21, . . +, Jx, 2nf3 = L,, Jyl =a12), Jy2= Jw), . . ., JY, Ntl = 

IIN, JY, Nt2 = I(n), - . a, JY, 2N+1 = 1(2N), JY, uvtz = 

. J1(12), . . ., JY, vv+ntl = Jn(lz), JY, 2Ntnt2 = 
J 1(21)7 * * .I JY, mtm+l = J n(21) 

For isotropic systems and small deviations from equilibrium the following linear kinetic 
relationships between fluxes and thermodynamic forces of equal tensor dimensions : 

2nf3 2n+3 

Jz = En.% Jxl = 2 -&Xi,, . . ., Jx, 2nt3 = 2 L,n+,, h X, (4.5) 

h=l h=l 

2Nfznf1 2N+2n+1 

JYI = 2 &Ye, . . .t JY, 2N+2n+1 = 2 D2N+m+1, e ye 

II=1 e=1 

are valid in virtue of the Curie principle. 

The Onsager reciprocity relation implies that 

Lab =Lhp (h,P=i, 2, es., 2n+3), Dey=Dye (e,r=1,2 ,..., 2~+2n+1) 

It will be seen from (4.5) that in the case of polyphase multicomponent systems (with 

chemical reactions, phase transformations, and heat and mass exchange) simulated by 
interpenetrating continua the cross effectspectrum widens considerably in comparison 
with such effects in single-phase systems [lS] (e, g. the Soret, Dufour and other effects). 
Thus the magnitude of diffusion and heat fluxes within a phase are affected by the rela- 
tive motion of phases (coefficients &I, LX, . . . , LZWSJ). The heat flux qc12) between 
phases is determined not only by the difference of their temperatures, but also by the 

driving forces of interphase transport of mass (coeffcients; D, 2N+2, . . . , D1,2N+2n+l) 
and chemical transformations (coefficients ~912, . . . , Dl,2n7tl). 

The rate of transport of the k-th component substance between phases is primarily 
determined by the driving force of interphase mass transport which is the resultant of 
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three components: the Planck difference of potentials (piii / Ti - Pjk / ~j), the enthalpy 
driving force ir(<j) (i/Tj - i/Ti) , and the imbalance of phase rates (vcijJ - vjJ2 i 2 Tj - 

(V(G) - Vi)2 / 2 Ti. 

In the structure of the driving force of mass transport the above factors are additive and are, 
consequently, equivalent as to their effect on the rate of mass exchange between phases. IJnder 

isothermic conditions(e. g. in the case ofisothermic absorption or extraction) T1 = T, = 
const, and the rate of component transport between phases is determined only by the dif- 
ference of chemical potentials and imbalance of rates between phases. 

Besides the described direct effects the intensity of mass exchange between phases is 
affected by cross effects : temperature imbalance of phases (coefficients D,,+^. r) and 

the imbalance of chemical transformations (coefficients D2NS,i,l . . . D2N+k,zN+1). Cross 
effects such as temperature and concentration gradients in phases, which affect the me- 
chanical interaction of phases (coefficients LIZ, . . . , L,m+J should be noted. 

5. The COmpletO ayatsm of equatlonr of motlon for p. di8per8e 

mixture. The contribution of cross effects to the overall rate of a process is usually 
by one order lower than that of direct effects [18]. If the kinetic relationships(4.5) are 
restricted to direct effects only, the expressions for fluxes assume the form 

P,Q’ 
v’ = El1 T1 , f(l2) = Lll(V1 - Vp)!++$j, ql* =-+T, (5.1) 

D iwrt1, .v+rt1t D k(12) == D %.V+ktl, 2Ntktlr D k(21) = D ?N+ntktl,2.%'+ntktl 

Y k(U) - - Y2Ntkt1, 2Ntkt1, Yk(21) = Y2N+n+k+l, 2NtWk+l) 

The kinetic coefficients in (5.1) must be determined experimentally. Thus with allow- 

ance for (5. l), (3.4) and (4.1) the system of equations of thermohydrodynamics of multi- 

component heterogeneous disperse mixtures assumes the form 
.V 

dlPlk 
7 + Plkvvl' - v&k + Jk(el) -JIW + 2 vk(lr)l(lr) (k -= 1, “, . . ..lL) (5.2) 

r=i 
N 

QJ21, 
7 + P2kVV2 = - V.isk + Jk(m - Jk(21) + 2 yk(.lr)~(ar) 

I‘=-1 

g + v (mvq) = 0 

PI dt = - "~VP 4 vq~lq -- 4~) + Jc21)(~(21) - vd - 
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7% 

d2v2 
Q27-=- U2VP -t 41.2) + ~(~*~(v~~~) - ~2) - ufiz~)(v(z~) - ~2) -i- 2 p2kF2k 

A=1 

dlU1 alp d1p1” 
Pl dt =- plQ & - - + x&12) (~5 - v2) + v%@ + Jc~~) 

(V(U) -VI)* 
- 2 

J @(12) 
fl2) -v1)2 - i Jk(Zlj(i1 - ilk, S) - i JL@)(i,k, S - il) + 2 

k=l k=1 

9(*1)-v% + PI& + 5 F1k j,, 
k=l 

dzuz U2P dzpz” 

Q2 dt = pr” - dt + ~2f(12)(% - v2) + 412) 
@(12) - v2)2 

- 2 

J(Z) (v(2?; v2)2 - i e&&l) (ilk, 8 - it) - ;j;: .flfflq (izk, p - i2) - 
!;=I k=l 

%21) - V% + ~2Q2 + ; Fzkj k 
k=l 

P1=Pz=P, a,+a,=1, a,=~ma3, x1 + x-2 = $7 PI0 = PI/al 
11 ?l 

fb3 = P2 / 32, f% = 2 Plk? P2 = 2 f&k, jlk = plk(v,k --VI) 
K=l k=l 

e&k = P2k(V2k -. 1'2) 

Equations (5.2) together with Eqs, (2.4), the thermodynamic relationships (3,5)-(3.13), 
and the phenomenologi~l equations (5.1) in which the kinetic coefficients are experi- 

mentally determined,constitute a closed system of equations of motion of a two-phase 
multicomponent disperse medium in which heat and mass exchange processes take place 
simultaneously with chemical reactions. 
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We consider the problem of a stationary convective diffusion of a substance, dis- 
solved in an incompressible fluid flow on the surface of a particle moving with 
constant speed in a shear flow field. We assume that the flow over the particle 
is inertia-free and that there is total absorption of the dissolved component on 

its surface. In the diffusing boundary layer approximation we determine the con- 
centration field and obtain expressions for the total diffusing stream of a substance 
on the surface of a solid spherical particle and on the surface of a spherical drop 

(bubble). 

1. The flow field. In a rectangular Cartesian coordinate system fixed to the 
center of a moving spherical particle (drop) the velocity field of an unperturbed (at large 
distances from the particle) translational-shear flow can be written in the form 

v = {% vu, v,} = {-az, -ay, U + 2~x2) (1.1) 

Here U is the speed of the unperturbed translational motion of the fluid, a is the shear 
motion intensity, which may assume both positive and negative values. 


