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Equations of mechanics of multicomponent two-phase compressible disperse mix-
ture, in which heat and mass transfer processes and chemical reactions take place,
are derived, Interphase energy transfer in particular during component transition
from one phase to another is analyzed, Problems of allowance for phase imper-
fections and of conditions of thermodynamic equilibrium are considered, Expli-
cit expression is derived for the dissipation function, linear phenomenological
relationships are analyzed, and singularities of the structure of direct and cross
effects which develop in the system are disclosed,

The state of investigations related to mechanics of heterogeneous mixtures is
presented in the survey [1], We would point out here that Rakhmatulin was the
first to formulate a closed system of equations for determining mixtures of com-
pressible phases [2], The system included equations of mass and momenta of
phases and equations for the over-all pressure, The proposed in it scheme for
defining the force of interaction between phases is peculiar to a polyphase mix-
ture and not to the multicomponent one, These concepts were applied to a satu-
rated porous medium consisting of a mixture of two compressible phases without
phase wansitions, A scheme for defining energy exchange between phases and
thermodynamic equations were proposed,

A system of hydromechanical equations for 2 two-phase single-component
disperse mixture of compressible phases was considered in [4], Phase transform-
ations, which complicate the interphase exchange of energy and momentum,
were assumed to be present in the mixture, This model was later supplemented .
by an allowance for surface effects and small scale flows around inclusions [5].
The equations of balance of mass, momentum and energy of components in a
multi-speed form were formulated in [6—~10], No clear distinction between ho-
mogeneous and heterogeneous mixtures was made in a number of investigationis
of this kind [1], with the analysis reduced to that of equations of conservation
of components,

It should be noted that in the case of a homogeneous mixture it is not neces-
sary to have separate equations of momentum and energy for each component,
Such separation (hence, also, the setting of momentum and energy exchange)
must be made by phases only, i,e, in the case of a heterogeneous mixture in
which in addition to other conditions it is necessary to take into account parts
of volume and interphase surface of mixture occupied by each phase [1] (this
problem does not arise in the case of homogeneous mixtures), An important as-
pect of the definition of a heterogeneous mixture is the correct determination
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of the structure of terms which define the interaction between phases which takes
place at interphase surfaces,

1, Basic assumptions, Let us consider a two-phase 7-component medium in
which chemical reactions occur inside each phase simultaneously with interphase tran-
sitions, The basic assumption is that the phases are homogeneous mixtures (solutions,
mixtures of gases) and that the distances along which flow parameters change consider-
ably (outside discontinuity surfaces) are substantially greater than the characteristic in-
homogeneities or inclusions (drops, bubbles, particles) which define the mixture phase
structure, This makes it possible to define the behavior of such mixture by using the con-
cept of interpenetrating continua [1, 4],

Let p;,° be the density of the A-th component (k = 1, 2, .. ., n) in the j-th
phase averaged over the volume occupied by the /-th phase (i == 1, 2) . Then

n 2
Aot =0 pi=op’ do=1 (>0), p=p+p
k=1 i=1
where 0;° and p; are the true and the mean density ofthe {-th phase @; is the volume
of the i-th phase,and p is mixture density,

We define the velocity of a phase by its mass velocity

n
1
Vi = o 2 VikPik
Y ok=1

where v, 'is the velocity of the %-th component in the i-th phase, averaged over com-
ponents contained in that phase,

We assume that within each phase the hypothesis of local equilibrium is valid, hence
it is possible to assign to each of these their individual temperature I';, internal energy
u;, entropy S;, enthalpy /; pressure p; and other thermodynamic functions,

The multicomponent structure of phases implies that thermodynamic functions of each
phase depend not only on the phase temperature I'; and its density p;°, but also on the
phase composition c¢iy, Cia, - - - Cin (Cin = Pirn / 04).

Let us consider a mixture of compressible phases in eacn of which strength effects are
absent, We consider the first phase as the carrier and the second to be in the form of
discrete inclusions (drops, bubbles, particles) of identical dimensions whose direct mech-
anical interaction can be neglected, Then @, == mma?®, where | is the particle form
coefficient and m is the number of particles in a unit of mixture volume which in the
absence of fractionation, coagulation and formation of new particles satisfies the equa-

tion [4] om /| dt + V (mvy) = 0
The carrier phase is simulated by a viscous fluid, whose surface force tensors o;? I and
those of viscous stresses ;%! are defined by

0,0 = —p8% + 1, 6,7 =0, 1Y = LVv, + 2p,e,%
where §2¢ is the Kroneker delta, A, and u, are viscosity coeffcients and ¢;7! is the de-

formation rate tensor of the carrier phase, Values of A; and [, are affected by the pre-
sence of inclusions [4],

2, Differential equations, We introduce for each phase the operator of the
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substantive derivative (here and throughout the subsequent analysis summation is carried
out only with respect to superscripts which relate to projections on coordinate axes) and
define the diffusion stream of the k- th component in the i- th phase by

2 9 __ 2

i _ 0 _ 0 _
T = TVVE g b et =g tuyt 2.1)

n
Jik = Pir (Vig — Vi) == pigWi, 2 PixWix =0
k=1
where w;,, is the diffusion rate of the k- th component in the i-th phase,
The equation of mass conservation for the k-th component is of the form
N
dipir/dt -+ 01V Vi = — Vi -+ Ty — Trai + D) Ve i) (2.2)
=1
Here and in what follows subscript i is equal 1 and 2; the pair of subscripts (ij) assumes
the values (12) and (21), respectively; Jyuj) is the "observed” macroscopic rate of the
k-th component transfer through the phase separation boundary in the direction i — j
(owing to phase transformation); [, is the rate of the r-th chemical reaction (r =
1,2, ..., N) in the i-th phase; Viury = PranMr; PBiir) is the stoichiometric co-
efficient for the A-th component participating in the r-th chemical reaction in the i-th
phase, and M, is the molecular mass of the %-th component,
Passing to mass concentrations, we can write Eq, (2, 2) as
N
d.c;
k .
o5 ——;; = — Vi -+ ki — Tkan + 2 Vil ary — Cik Ty — Jaiy)  (2..3)
re=1

The first four terms in the right-hand parts of Eq, (2. 3) take into account the change of
concentration of the k-th component caused by its inflow to or outflow from the volume
of the considered phase, The last terms relate to the change of concentration of the %-th
component owing to the change of mass of the considered phase resulting from the over-
all streams of substance through the phase separation boundary, Summating (2, 2) over
all components, we obtain for the first and second phases the following equation of mass

tion :
conservation dips | dt -+ p:Vvi = T — Jas (2.4)

where allowance is made for
n

n N n
Z Z Vk(ir)[(ir) =0, J(ji) = th» J(ii) = Z Jk(ﬁ)
k=1 r=1 k=1 k=1

The equations of motion for the first and second phase are of the form [4]

d.v, "
11
Pi—r = — VP —lay+ T (Van—va) —Tan(Van —vi)+ D eaFu  (2.9)
k=1
(for the second phase the second term in the right-hand part is absent, fo;) = — f(13))-

Here F;; is the external mass force acting on particles of the %-th component in the

i-th phase; {;;, is the force per unit of mixture volume produced by the phase velocity
unbalance (Vv; and v, are different),and v; is the mean velocity of the mass passing
through the phase separation boundary in the direction i — j. Equations (2, 5)are based
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on the assumptions of the single-pressure model (p; = p» == P) and of smallness of
dynamic and inertial effects [1] of diffusion rates

P1aW1kWik ~ ParWarWor ~ 0

In formulating the equations ofbalance of the phase internal energy it is preferable
[4, 11] to use equations of heat influx which in the considered case are of the form

diui Cli[) dipio . q gl
Pi=gi = oo dt wilyy (V5 — vi) -+ 7ile ! - (2. 6)
1

(Vg — v3)° ) — Vi)? 5o
—y — s+ 2 Fidix —

k=1

I i)
n n

2 T kinEiniy — 2 v + 4o — V4 1 0:0;

k=1 k=1
(for the second phase the third term in the right-hand part is absent; ¢u2) = — Q1)
if i = 1, then j = 2 and vice versa), In this equation the first five terms at theright
in the first equation ({ = 1) and the four in the second equation (i = 2) represent the
work of internal forces per unit of time in a unit of volume of the first and second phase,
respectively, Coefficients %; (x; -}- x, = 1) show the part of dissipated energy of the
mixture produced by the phase force interaction which is directly converted into internal
energy of the i-th phase, Terms of the first summations in both equations define the
power output of external mass forces for component diffusion within the limits of the first
and second phases, The remaining terms, viz, , heat influx with ;) (ji) and x;r(ij are
the quantities of heat transfered from the i- th phase to the substance of the A-th com-
ponent per unit of its mass, when it effects the transitions j — i and { — j , respectiv -
ely; ¢ is the intensity of (contact) heat exchange between phases; (; is the heat
flux within the i-th phase,and p;{; is the output of external heat sources acting in the
volume of the i-th phase,

3, Energy transfer at interphase heat and mass exchange, Assum-
ing the additivity of entropy and total energy related to the mass of mixture phases and
local equilibrium within a phase, we introduce for the phase mixture the specific entropy
s and (neglecting second powers of the diffusion rate within phases) the specific total

energy £
rgy ps = p18y (py T1y €115 - - = 1) -+ P2So (py Tyy Co1s -+ =y Can) |

pE = pyuy (p, Ty, €uar - + > Cin) T Pald (p, Ty, Cops + - = Can) I
Yeprv1® Hopgvs®

The concept of the substantive derivative for a quantity @ which defines the mixture
as a whole and is additive with respect to the masses of mixture components

PO | 4O :
®pr = 2 lpi T @ Gy —J(m)J (3.1)
=1

=1

was introduced in [4], This derivative determines the variation of (D in a fixed volume
of the medium, which is unaffected by mass inflow through the boundaries of that vo-
lume, Let us determine with the use of (3,1) the accommodation conditions which must
be satisfied by Z;j (j;; and Zix (5 in the equation of heat influx (2,6), To do this we
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write the derivative of (3, 1) for the total energy of the two-phase mixture £ = ¢ and
D, = ; + l/2 viz'

1
Substituting into this the equations of heat influx (2, 6) and the equations of balance

for the kinetic energy, which follow from (2, 5), we obtain

DE
Por= Zan — Zaz) — v (UpVy + oepvs) + v (1 %,!) — (3.2)

V(41 + 92) + 0:Q1 + 020, + 2 PrpF1vex + 2 02 Fayvay
k=1 k=1

n

(E\’ii) = 2 Jian [ul — ty + (— D@y + Zanaiy) + p (_{31_0 — i:)])
k=1 1 P2

By the definition of the derivative DZ / Dt the variation of total energy of a fixed

mass of mixture, which is defined by that derivative, is determined only by the external

effects (defined by the last nine terms) and not by any internal processes, Hence expres-

sions of the kind of energy sources owing to the wansfer of matter from phase to phase

in the right-hand part of (3, 2) (the first and second sums there) must vanish, Introducing

the enthalpies of phases i; = w; + p / p;°, we obtain

n ki3

2 T @ + Tawn) = D Ty (s — ) = Ty (65 — 13)

k=1 k=1
The specific definition of the model requires data on that part of energy J(;j (i; — i;)
which is expended or absorbed individually by the first and second phase at transition of
mass in directions 2 — 1 and 1 — 2, i,e, accommodation relationships for Zix(:j)
and T;(jiy must be specified, Let us specify these additional relationships, If we as-
sume that Ziyij) -+ Tin(ij) are independent of Jy;j, . . ., J, i, it becomes pos-
sible to replace Z;p;; by ipij) which determine x;,(;; and distribute the energy
Iy — I; between phases so that

Tikazy = ik2) — by,  Taramy = Iy — k) (3.3)
Zygeny = b1 — ka1 Taken) = tk@y — Iz

where i,(;; define the accommodation properties of phases at transition { — j, In the
case of bulk chemical reactions it is possible to take for ip(e) and Ip(sy) ,asin [4],
the specific enthalpies of equilibrium transition of the k-th component from one phase

to another . , i .
Lk(iz) = fak, s == lak, 5 (€ar, 50« + o5 Cony o0 Ls)s  Bppmny == bai, s = (3.9

tik, s (Cll, IERTE 5 U Ts)

where T's is the temperature of equilibrium transition of the %-th component in the
direction 1 =2 2; Cip,s and €y3,s are equilibrium concentrations of the A-th compon-
ent in phases 1 and 2, respectively, In some cases, such as for instance combustion [12],
when the chemical reaction takes place at the interphase boundary, these accommoda-
tion relationships are of a more complex form,

Formulas (3, 3) and (3, 4) in fact imply that the i~th phase during transition { - j
directly looses or absorbs the energy necessary for bringing at the ambient pressure the
mass undergoing such transition, from a given state to the state of the j-th phase in
equilibrium, The remaining energy required for bringing that mass from the equilibrium



466 I.N.Dorokhov, V.V.Kafarov and R.I.Nigmatulin

to the working state of the j-th phase is lost or absorbed by the i-th phase itself,
Accommodation formulas (3, 3) and (3, 4) require the determination of partial specific
enthalpies of phase components in equilibrium, In mixtures of gases (vapors) at not very
high pressure , and also in liquid solutions,whose heat of component mixing is low, the
partial properties of a mixture are close to the related properties of pure components,
However, in imperfect mixtures (considerably deviating from Dalton's law for gases (va-
pors) or from the Raoult law for solutions of liquids) partial properties depend on the mix-

ture composition, They are of the form [13]
o o1n g,
L= b+ Dy, ALy =RT, T (3. 9)
where Ai;; is the "excess” enthalpy or correction for phase imperfection, which is a
function of phase temperature and composition (the heat of mixing of the %-th compo-
nent in the i-th phase); R is the gas constant; 7¥;; is the measure of imperfection of
the i-th phase or the activity coefficient of the 4-th component in the i-th phase whose

implicit relation to the equilibrium composition of the i-th phase (expressed in terms

of molecular fractions Cy, k= 1,2, ..., n) for fixed pressure and temperature fol-
lows from the Gibbs-Duhem equation [13]
n
dlny,
Z Cik ———lk =0 (3- 6)
i
k=1

Owing to the lack of an explicit analytic expression for the dependence of the activity
coefficient on mixture composition, approximate formulas are normally used for defin-
ing the relation between these quantities, One of the most convenient forms of the ex-
pression for that relation is the one derived by Wilson [14] (for the liquid phase)

, T . n n
Iny,, =1 _1n(2 ClgAkg)— 2(0”1\“/ z clgAlg\ (3.7
g=1 =1 g=1 /
v Ay — A, )
ig kk kg
Arg = _~°xP [ RT: ]

where (Mgx — Akg) is a constant parameter which defines the difference of cohesion
energies of k — k and k — g molecular pairs and V;; is the specific mole volume of
the pure k-th component in the liquid phase, For a binary mixturw from (3, 7) we ob-
tain A Ast
Intn=—1n(Cu+ CieAp) + Ci2 Cu+ CreAriz — AaCi+- Crz

, Az An
7= —In(Ce+ Culda) — Cu Cu 4 CrpA1ie ~ CulAa+ Cre

(3.8)

It follows from (3, 7) and (3, 8) that sufficient experimental data on the equilibrium of
binary component mixtures constituting a given multi-component mixture are available
for the determination of A;, and, consequently, of activity coefficients in the liquid
phase, The activity coefficient of the k-th component of gas mixture in equilibrium
with the liquid phase is determined by formula [13}

Tog = Pax! (T1xCriP%") (3.9
where p,° is the vapor pressure of a pure component whose dependence on temperature
is usually approximated by a power polynomial or the Antoin equation [15]
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o az g
In p,° (Ty) =ay wr T T agTs + asTo? +agIn T2 (3.10)
where aj, ..., @s are constant coefficients and @, is the fugacity coefficient defined
by the equality [16] 1t v, RT,

]

The derivative of volume V, of gas mixture with respect to the number of moles n,; of
the k-th component is taken at constant pressure and temperature, and the quantities
Va» Tay b and ny are interrelated by virial equations of state of real gases

PVorr P, e
R;’z =14 5+ By (‘/2A1:V2/2”2k> (3.12)

oM Vou
=1

where g, ¥Ps, ... are the second, third, etc, virial coefficients which for an imperfect
mixture depend on the composition and temperature of the latter [16],

It is clear from (3, 5) -~ (3,12) that the knowledge of the equilibrium composition and
temperature of phases is required for the determination of partial specific enthalpies at
equilibrium, Computation of the vapor-liquid equilibrium of multicomponent systems
is based on the equality of component fugacity in phases f;, = f,; [16] or on

T =T Crfrg = o Copp == oy, (3.13)

where fi;° is the fugacity of the %-th component in the liquid phase in a normal state
which is determined by the principle of corresponding states [17], Physicochemical
properties of pure components and experimentat data on the equilibrium of binary com-
ponent mixtures are used as the input information for computing multicomponent equi-
librium by formulas {3, 7) — (3,13), This is usually carried out on a computer with the
use of the iteration method [15, 17], First, the activity coefficients of a multicomponent
mixture are determined for the specified temperature by Eq, (3, 7) and then, the equilib-~
rium composition of the system is computed by fromula (8, 13) with allowance for(3,9)~
(3,12), 1If this results in the sum of computed component concentration in the vapor
phase being different from unity by more than the specified e, the equilibrium temper-
ature is corrected and the computation repeated,

4, Thermodynamic analysis, Entropy generation, The assumption
of local equilibrium within a phase (Sect, 1) makes it possible to obtain for an element
of the i-th phase moving along the mass center path the Gibbs formula

d;s, d.u, d; 7 9 < dic,
Ti— = +pﬂ(pi°>“,§1pik at .1
where p;; is the chemical potential of the k-th component in the i- th phase,

Setting in (3,1) @ = s and taking into account the Gibbs formula (4, 1), we obtain
the expression for the substantive derivative Ds/ Dt for the entropy of a two-phase
multicomponent medium in which chemical reactions and interphase transport processes
take place, We have

DS___ o1 diwy p2  daus arp dip’
PDI=T @ T T @  orTi dt (4.2)
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asp  dape’ p1 U J i1y — 8 S
pTe  di Ty g =g dt 21 !"2}; dt ( ) (31))( L 1)
Substituting (2, 8) into {4, 2) and taking into consideration formulas (3, 3) and (3,4) and
b J \Fe &) & e wormulag (o, 0 anc (o, 2) ald
the thermodynamic equalities [18]
n
2 Cigllix = Uy si= =T (=1, 2) (4.3)
k=1

Tidi (ir / Ti) = (dpar); — 1dT5 /T =1, 2)

where the subscript { = 1, 2 at parentheses implies that the differential is taken at the
corresponding constant temperatures I'y, or 7, we obtain for Ds/ Dt an expression of
the form

1 : .
p —ﬁst— = plQl - 9202 [‘f{ (‘h - ;§1 ka.hkﬂ - 4.4
1 a . el

1% [7‘2‘ (‘h - )Zl;l szJzk)} + ""1'1*;?“ + fag) (v1 — V) <;—i + -;%) +

2 (—1———1->—-q1*v< : )""h v(z)—
kZ Jik (W — Fre] — T Z ok [(Whar)e — Fai] —
) ? k=1

1
T Z By dyry — Z Byl + Z Jk1z) [(7’: -%) +

r=1

, 1 i (‘(12) vo)? (Vuz) vy)?
Lok, s (Tz - 7f;> + ST T T } +

n
Pk P ; 1 1
2 Jken) [( T22 — ) T lu:,s(‘T‘l‘ -7;\ +
=1

(Vigyy — V1) ) (Vigq) — V) }

2Ty 2T,

n n
(Bir: 2 BigViiry 4:* = q; — 2 Ligdig, t=1, 2)
k=1 k=1
In conformity with the second law of thermodynamics the derivative Ds/ Dt can be
presented in the form of the sum of two terms

Ds /] Dt = D®s [ Dt + DWs /[ Dt

where the first term defines the entropy increment of the mixture caused by entropy in-
flux from outside which is produced by energy exchange with the external medium (the
first four terms in the right-hand part of (4, 4), while D®s/ D7 (always nonnegative)
determines the entropy increase produced by internal irreversible processes
208 Ds oy
P—pr =0 pr TP T 5=0

within and between phases, The dissipation function 0 is represented by the last eleven
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terms in formula (4, 4) and is the sum of the product of thermodynamic forces

ql
Z=2 X —(v,—v (ﬁ X _ I vT
Tl’ 1 (1 2) T1+T27X2—_T~12’ :__T_22
_ (ypar)y — Fny (v ), — F
Xy = Y AR Xn+3:——“lan1 In
n (vuer)e — Foy (VHy,)e —F
Xn+4——‘_T2——,..., X2n+3:——-_2n’1272“2n
1 1 B B
Y e —_ 11 . 1N
1 T T:? Y2 __Tl 3 v ey YN_H__——TI_.
B B
Yive = — 2 ... = 2N B P
N+2 Ty ! ) )(,2N+1 = ) T, Y2N+2 = Tx — Tz.> +

i ! 1 Van —V2? (Vg — V1)

i —_— )

21, s ( ]'2 T1> + 2]v2 2T1 9 v ey Y2N+2n+1 ——d
Pop p‘1n> 1 1 (Viopy — V1)? 2
2 in : o (21) 1 {(Vigr) — Vo)

[2 —_— )
( T ) e ( T Tz) R a7
by thermodynamic fluxes
JZ = qul’ JX]. = f(12)’ JXz = ‘h*v JXa = q‘z*’ JX4 = jlh RN JX,n+3 = jln
JX,-n+4 = Ja1y ¢+ s JX,2n+3 = Jon, JY1 ={q2) JY2:I(11)7 sy JY, N+1 —

Ile JY, N+g = 1(21), ) JY,2N+1 = ](2N), JY,2N+2 =

'J1(12)1 vy JY, aN+n+l — Jn(m)y JY,2N+n+2 =
J1(21)7 LIRS JY, aN+on4+1 = Jn(21)

For isotropic systems and small deviations from equilibrium the following linear kinetic
relationships between fluxes and thermodynamic forces of equal tensor dimensions:

2n+-3 an-+3
Jz=FEuZ, Jxi= 2 LuXn -0 Jxoms= 2lonanX, (45
aN-+-2n41 i 2N—|-2n~l-1h=1
Jyl — Z DngB, c ey Jy’ oN+on+l = 2 D2N+2n+1, o Yo
=1 =1

are valid in virtue of the Curie principle,
The Onsager reciprocity relation implies that

Lgn =Lng (R, 8=1,2,...,20+3), De=D® (8,v=1,2,...,2N+2n+41)

It will be seen from (4, 5) that in the case of polyphase multicomponent systems (with
chemical reactions, phase transformations, and heat and mass exchange) simulated by
interpenetrating continua the cross effect-spectrum widens considerably in comparison
with such effects in single -phase systems [18] (e, g. the Soret, Dufour and other effects),
Thus the magnitude of diffusion and heat fluxes within a phase are affected by the rela-
tive motion of phases (coefficients La, Ls1, . .., Lentsy). The heat flux g,y between
phases is determined not only by the difference of their temperatures, but also by the
driving forces of interphase transport of mass (coeffcients; D, n.o0 +«+ s Dysnionsa)
and chemical transformations (coefficients D, ..., Dy ons)-

The rate of transport of the k-th component substance between phases is primarily
determined by the driving force of interphase mass transport which is the resultant of
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three components: the Planck difference of potentials (i / T; — wuj,;/ T';), the enthalpy
driving force iy (1/7; — 1/T;) ,and the imbalance of phase rates (v(;; — v))*/ 2 7j —
(Vﬁj) - Vi)2 /2 Ti.

In the structure of the driving force of mass transport the above factors are additive and are,
cons2quently, equivalent as to their effect on the rate of mass exchange between phases, Under
isothermic conditions(e, g, in the case of {sothermic absorption or extraction) 71 = T, =
const, and the rate of component transport between phases is determined only by the dif-
ference of chemical potentials and imbalance of rates between phases,

Besides the described direct effects the intensity of mass exchange between phases is
affected by cross effects: temperature imbalance of phases (coefficients D,y,, ) and
the imbalance of chemical transformations (coefficients D,n.p o+ Dynip o). CrOSS
effects such as temperature and concentration gradients in phases, which affect the me-
chanical interaction of phases (coefficients iz, . .., Lien+s) should be noted,

5, The complete system of equations of motion for a disperse
mixture, The contribution of cross effects to the overall rate of a process is usually
by one order lower than that of direct effects [18], If the kinetic relationships(4,5) are
restricted to direct effects only, the expressions for fluxes assume the form

7,9 = Ene]qul v fagy = Ly (vi — Vo) <_K[wl]‘ + —%)7 g* = — 7[-412:V' , (5.1
g = — % vl Ju= — _%111: (i — Fil

Jop = — [Tzh [(Vher)e — Fayl

qun = 22 (1T, Lan— — 72 Buy Tan= — 22 B

Jk(m) = Dk(l'z)Yh‘(IZ)a Jlf(Zl) = ch(21)Yk(21)

(le = Lk+3, k+3) sz = Ln+k+3, n+k+3s Dlr = Dr+1,r+1y D-zr =
(r>1 (r>1)

DN+r+1, N+4T+11 Dk(l‘z) == D2N+k+1, 2N +E+1s Dk(21) - D2N+n+k+1, aN+n+k+1
Yk(12) = Y2N+k+1, aN+k+1s Yk(m) = Y2N+n+k+1, 2N+11+k+1)

The kinetic coefficients in (5, 1) must be determined experimentally, Thus with allow-
ance for (5,1),(3,4) and (4, 1) the system of equations of thermohydrodynamics of multi-
component heterogeneous disperse mixtures assumes the form

N
dipy, .
dtm “+ 01V V1= — Vit Jrer) = ka2) + 2 Vianlan (k=1,2,...,n)  (5.2)
r=1
p N
2 .
d:k + pakVVa = — Viax + Jraw — Tk + Z Vien/ er)
r=1
om (k= 1,2,...,n)
< T v(mvy) =0
divi X
01— = — VP + vIn? — lug + Sy (Vay — Vi) —

J(u) (Yazy — Vi) F Z P1eF 1k

k=1
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n
dave .
O3 = — %VP + oy + Jag) (Vay — Vo) — Jon (Ve — Vo) + 2 ParF o
k=1
diut op d1p1 (V )2
oL = e + tafaay (Vi — Vo) + 1yley @ - J gy, B h .
7 Vaz) —“vl)z ) _ . ‘
) /3 2 Jiany (b — fai, ) — 2 sy (ak, s — By) +
k=1 k=1
ey — Va1 + 0101 + 2.1 Fixhi
F==1
deus e p d2p2 v )2
Pegr = o @ ~+ %of1a) (Vi — Vo) + i1y "'(li)z'_““ .

(V(zl) - ‘72)2 . . “& . .
J(‘ll) ) - 2 Jk(ﬁl)(‘lk,s — lg) — Zl Jk(lz) (tag, s — fa) —
k=1 k=1
n

Qe — V42 + 020, + 2 Ford
k=1
Pi=pPe=p, G-+oay=1, oy=mma®, » +x =1, p,°=p;/

P2’ = P2/ %, Py = 2 Py P2 = 2 P2 Juk = P (Vik — Vi)

#=1 k=1
Joie = Pog (Vo — V)

Equations (5, 2) together with Eqs, (2, 4), the thermodynamic relationships (3, 5)—(3,13),
and the phenomenological equations (5,1) in which the kinetic coefficients are experi-
mentally determined,constitute a closed system of equations of motion of a two-phase
multicomponent disperse medium in which heat and mass exchange processes take place
simultaneously with chemical reactions,
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We consider the problem of a stationary convective diffusion of a substance, dis-
solved in an incompressible fluid flow on the surface of a particle moving with
constant speed in a shear flow field, We assume that the flow over the particle

is inertia-free and that there is total absorption of the dissolved component on

its surface, In the diffusing boundary layer approximation we determine the con-
centration field and obtain expressions for the total diffusing stream of a substance
on the surface of a solid spherical particle and on the surface of a spherical drop
(bubble),

1, The flow field, In arectangular Cartesian coordinate system fixed to the
center of a moving spherical particle (drop) the velocity field of an unperturbed (atlarge
distances from the particle) translational-shear flow can be written in the form

vV = {vxv Uy, v:’} = {'_ax7 —ay, U + 2(12} (1- 1)

Here U is the speed of the unperturbed translational motion of the fluid, @ is the shear
motion intensity, which may assume both positive and negative values,



